

Embedded Tech Trends 2013: "Embedded Technologies in Action" VITA 74 Small Form Factor Systems

January 21-22, 2013 Version 1.3

VITA 74 Small Form Factor Systems

Embedded Tech Trends Long Beach, CA

21-22 January, 2013

Who is CES?

CES is a designer and manufacturer of complex high-performance electronic boards, subsystems and systems for a specialized segment of the embedded computing market...

- Over 30 years of experience
 - Founded in 1981 in Geneva, Switzerland
 - Initial contract for CERN (European Organization for Nuclear Research)
- Markets
 - Aerospace and defense (core business)
 - Telecommunications
 - Physics
- COTS product lines
 - Single board computers, signal processing, video, small form factor
- Standard and custom systems
- World-wide locations
 - CES Headquarters: Geneva, Switzerland
 - CES-D: Ulm, Germany
 - CES-GB: London, England
 - CES-Spain: Madrid, Spain
 - CES-West: Salt Lake City, Utah, USA
 - CES-CAL: Morgan Hill, California, USA

The story behind VITA 74

- The user community need
 - Standards-based approach for small conduction-cooled systems
 - SWaP critical applications:

Aerospace Unmanned vehicles Man-wearable systems Robotics Oil and gas, mining Law enforcement Transport systems

The inspiration

- COM standards including nanoETXexpress miniature CPU modules
- VITA standards for VPX, OpenVPX, XMC and FMC
- The need for a smaller size but similar price-point compared to PC/104
- The goal
 - Boards the size of a credit card
 - Stand-alone computers the size of a deck of cards
 - Systems the size of a Rubik's Cube

The story behind VITA 74 - results

- A standards-based small form factor ecosystem and infrastructure
 - VITA 74 Committee established by VITA Standards Organization (VSO) in early 2010
 - The VITA 74 Committee has significant involvement from several merchant board manufacturers, system integrators and defense primes
- A standard that draws upon existing standards reduces risk and schedule
 - Signaling similar to VITA 46 (VPX) and VITA 65 (OpenVPX)
 - Adopts the VITA 57 (FMC) connector
 - Uses VITA 42 (XMC) FRU inventory records for discovery over IPMI
 - Can accommodate the PICMG COM Express nanoETXexpress card (the original NanoPAK)

Specification scope

- 12.5mm and 19mm modules
- Backplane-based (NanoATR) and stand-alone (NanoPAK) module versions

Industry drive to reduce Size, Weight and Power - and Cost (SWaP-C)

6U (VPX, VME) 233mm x 170mm x 20mm

3U (VPX, VME) 100mm x 170mm x 20mm

Committee members and participating companies

VITA 74 participating committee members:

- Creative Electronic Systems
- Themis Computer
- Samtec
- Elma Bustronics
- Molex
- Acromag
- Curtiss Wright (observer)
- Lockheed Martin
- VITA
- X-Embedded

Other companies active in VITA 74 projects:

- Colorado Engineering Inc.
- VectorNav
- Alphi Technologies
- Pentek
- Techsource
- Rockwell Collins
- MILCOTS
- Neuro Logic Systems

Rockwell Collins Building trust every day

VITA 74 Standard (SFF) NanoATR and NanoPAK

NanoATR

- Backplane-based module
- Used in multiple module enclosures
- Or single module rugged enclosures

NanoPAK

- Stand-alone computer module
- Cable I/O connector included

Modules

- 12.5mm module
 - Single base card only
 - 4 row connector (200 pins)
 - Backplane pins for locating / ESD
 - Applications are mainly peripherals: //O GPS / IMU Storage

- 19mm module
 - Base card plus nanoETXexpress-sized mezzanine card
 - 8 row connector (400 pins)
 - Backplane pins for locating / ESD
 - Applications:
 - Single board computer Software defined radio Graphics/video FPGA

Robust thermal management design

- Conduction cooling path from chip to heatsink
 - Chip to profiled spreader (skyline interface)
 - Spreader to case
- Module provides heat spreading on 3 sides

Backplane connector (NanoATR)

- Samtec SEARAY series
 - As qualified in VITA 57 (FPGA mezzanine card)
 - High density: 4 or 8 rows, 200 or 400 pins, with 1.27mm pitch
 - High speed: up to 11 Gb/s with 3 dB loss
 - Straight or right angle
 - Shock 100G @ 6 msec
- Connector partitioning similar to VPX
 - S0 utility plane: similar to VPX (power, control, clocks, management)
 - S1 fabric: currently PCI Express Gen 1 or 2, up to 16 lanes
 - S2 user I/O: 18 differential, 36 single-ended in a full ground grid
- Enhanced connector locating and ESD protection
 - Provided with separate locator pin/receptacle similar to VPX

	Bert.	Bell	Bert -	test.	hind	Real	Sec.7	Sec.
. k.	Cash .	AND IN	- 445	48		100	1000	
÷		1020	185	18.8	- 10	100		-
	144	106	- 460	- 10.0		1.0	100	
	- 16	- 18	80.	188				
	-00	100	1010	100	-10		822	-
	- 10	10	(81)	1818	1647	- 10	1000	R4
τ.	- 10	- 10	1825	100	405	-	- 30-	(0.0
٠	008	00	SETA14	APR A	antest.	10	96.6	101
	- 20	- DOMESTIC	. 1825	184	82	-	10	
. 19	- 10	180	18	. 120	. (812)	10	100	11
10	-96	108	-80	188	180	100	Arts .	(24
12	-16	- 391	12	100	1077		jetr -	
10	-00			THE	-	0.0.3	-960	1.0
44	- 20	190	1452	ISALA .	- 18 8	1941.8	- 30-	187
18	96	. 19	10	49	-may	-340	10007	99
14	HTI .	0.00	13	40	CILLE	-340	TIEL X	- 013

S1

S2

Reference chassis, backplane and I/O transition panel

- Themis cube
 - 2x 19mm VITA 74 modules
 - 2x 12.5mm VITA 74 modules
 - 1x rear SSD storage module
 - Circular MIL ("Mighty Mouse") and SMA RF connectors
 - Slot utilization example: SBC Video frame grabber IMU / SAASM / GPS MIL-STD-1553 or discrete I/O
 - Operating Temp: -40°C to +71°C
 - Power consumption: up to 85W
 - Weight: 2 kg (typical)

Specification structure

- VITA 74.0 NanoATR base specification
 - NanoATR module
 - Signal definitions
 - Power
 - Module and system requirements
- VITA 74.1 NanoPAK
 - Covers features specific to the NanoPAK module standard
- VITA 74.2 NanoATR rear transition module
 - Development RTM standard
 - Allows module user I/O to be brought out to commercial connectors
 - Promotes standard development platforms and backplanes
- VITA 74.3 NanoATR CPU module
 - An optional standard I/O pinout to allow ease of interchangeability and technology insertion for CPU modules

VITA 74 Applications

VITA 74 Applications

Nano application examples

- VITA 74 SBC as CPU for smart displays
 - NanoPAK / NanoATR + dumb display = smart display
 - Easy technology refresh
- NanoPAK as man wearable computer for soldier and industrial use
 - Wrist or kneeboard display and keyboard
 - Monocle display
- NanoPAK or NanoATR as industrial computer
 - Replace shoebox-sized ETX applications
 - Oil and gas, mining, and other rugged applications
 - Trucks and fleet vehicles
- NanoPAK or NanoATR as unmanned vehicle or payload control
- Avionics

VITA 74 Applications - Case Study: Avionics

Benefits of VITA 74 for the avionics market - decentralization

- Decentralization drivers
 - Reduce cost, especially in certification
 - Increase reliability
- Decentralization enablers
 - Reduced SWaP of VITA 74 systems
 - High-speed interconnects to enable the physical separation of functions
 - Standard interfaces to simplify integration

Decentralization benefits

- Multiple smaller boxes provide functional redundancy and segregation
- Control electronics can be placed close to actuators and sensors
- Critical analog signal lengths are reduced
- Leads to more generic processing
- Localized sensor fusion and decentralized control reduces cabling
- Reduced criticality of individual units
- Reduction in certification costs

VITA 74 Applications - Case Study: Avionics

Typical avionics applications

- Video processing functions
 - 360° video acquisition
 - Sensor fusion
 - Digital maps
 - Target recognition, tracking
 - Digital video recorder
 - Intelligent displays, video over Ethernet
 - Video compression / decompression
 - Video selector / tiling video
- Mission control and processing
- Distributed I/O and control electronics
- Data link and network processing

VITA 74 Applications - Case Study: Avionics

Typical avionics VITA 74 module requirements

- PowerPC[®] processor modules
 - Ideal: Freescale QorIQ P1 or P2 multicore system on chip
- Video processor modules
 - HD H.264 Compression: CES VIP-7412
- Intelligent avionic I/O module(s)
 - MIL-1553B, ARINC-429, RS-422
 - +28V isolated discrete I/Os
 - Analog I/Os
 - AFDX® for critical control, GETH for video and maintenance
- Real-time operating system
 - VxWorks® (653), Integrity®, etc.
 - Linux® if not critical
- Safety-critical option
 - DO-254 and DO-178B/C up to DAL-A
- Other requirements
 - Open standard, COTS solution to reduce cost
 - Weight of the system is critical
 - Conduction-cooled, sealed box, vibration-resistant
 - +28 VDC power supply, EMI/EMC protection

Conclusion

Conclusion

VITA 74 and Nano systems summary

- Standards-based path to SFF systems
- Includes a stand-alone module (NanoPAK) and a scalable multi-module system (NanoATR)
- Leverages the 3U VPX signaling
- Existing qualified small connector
- Straight-forward migration path from 3U VPX
- Environmentally robust
- Good SWaP properties
- Ideal candidate for decentralized avionics systems
- CES provides a straight-forward path for VITA 74 to attain DO-178 and other safety certifications
- Multiple suppliers and customers are embracing the emerging VITA 74 standard

